143 research outputs found

    Galacturonosyltransferase 4 silencing alters pectin composition and carbon partitioning in tomato

    No full text
    Pectin is a main component of the plant cell wall and is the most complex family of polysaccharides in nature. Its composition is essential for the normal growth and morphology pattern, as demonstrated by pectin-defective mutant phenotypes. Besides this basic role in plant physiology, in tomato, pectin structure contributes to very important quality traits such as fruit firmness. Sixty-seven different enzymatic activities have been suggested to be required for pectin biosynthesis, but only a few genes have been identified and studied so far. This study characterized the tomato galacturonosyltransferase (GAUT) family and performed a detailed functional study of the GAUT4 gene. The tomato genome harbours all genes orthologous to those described previously in Arabidopsis thaliana, and a transcriptional profile revealed that the GAUT4 gene was expressed at higher levels in developing organs. GAUT4-silenced tomato plants exhibited an increment in vegetative biomass associated with palisade parenchyma enlargement. Silenced fruits showed an altered pectin composition and accumulated less starch along with a reduced amount of pectin, which coincided with an increase in firmness. Moreover, the harvest index was dramatically reduced as a consequence of the reduction in the fruit weight and number. Altogether, these results suggest that, beyond its role in pectin biosynthesis, GAUT4 interferes with carbon metabolism, partitioning, and allocation. Hence, this cell-wall-related gene seems to be key in determining plant growth and fruit production in tomato

    Identification and characterization of metabolite quantitative trait loci in tomato leaves and comparison with those reported for fruits and seeds

    Get PDF
    Introduction: To date, most studies of natural variation and metabolite quantitative trait loci (mQTL) in tomato have focused on fruit metabolism, leaving aside the identification of genomic regions involved in the regulation of leaf metabolism. Objective: This study was conducted to identify leaf mQTL in tomato and to assess the association of leaf metabolites and physiological traits with the metabolite levels from other tissues. Methods: The analysis of components of leaf metabolism was performed by phenotypying 76 tomato ILs with chromosome segments of the wild species Solanum pennellii in the genetic background of a cultivated tomato (S. lycopersicum) variety M82. The plants were cultivated in two different environments in independent years and samples were harvested from mature leaves of non-flowering plants at the middle of the light period. The non-targeted metabolite profiling was obtained by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). With the data set obtained in this study and already published metabolomics data from seed and fruit, we performed QTL mapping, heritability and correlation analyses. Results: Changes in metabolite contents were evident in the ILs that are potentially important with respect to stress responses and plant physiology. By analyzing the obtained data, we identified 42 positive and 76 negative mQTL involved in carbon and nitrogen metabolism. Conclusions: Overall, these findings allowed the identification of S. lycopersicum genome regions involved in the regulation of leaf primary carbon and nitrogen metabolism, as well as the association of leaf metabolites with metabolites from seeds and fruits.Fil: Nunes Nesi, Adriano. Max Planck Institute Of Molecular Plant Physiology; Alemania. Universidade Federal de Viçosa.; BrasilFil: Alseekh, Saleh. Center Of Plant Systems Biology And Biotechnology; Bulgaria. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: de Oliveira Silva, Franklin Magnum. Universidade Federal de Viçosa.; BrasilFil: Omranian, Nooshin. Max Planck Institute Of Molecular Plant Physiology; Alemania. Center Of Plant Systems Biology And Biotechnology; BulgariaFil: Lichtenstein, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Mirnezhad, Mohammad. Leiden University; Países BajosFil: Romero González, Roman R.. Leiden University; Países BajosFil: Sabio y Garcia, Julia Veronica. Instituto Nacional de Tecnología Agropecuaria. Centro Nacional de Investigaciones Agropecuarias Castelar. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Conte, Mariana. Instituto Nacional de Tecnología Agropecuaria. Centro Nacional de Investigaciones Agropecuarias Castelar. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Leiss, Kirsten A.. Leiden University; Países BajosFil: Klinkhamer, Peter G. L.. Leiden University; Países BajosFil: Nikoloski, Zoran. University of Potsdam; Alemania. Max Planck Institute of Molecular Plant Physiology; AlemaniaFil: Carrari, Fernando Oscar. Instituto Nacional de Tecnología Agropecuaria. Centro Nacional de Investigaciones Agropecuarias Castelar. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Fernie, Alisdair R.. Max Planck Institute of Molecular Plant Physiology; Alemania. Center of Plant System Biology and Biotechnology; Bulgari

    Multi-omics approaches explain the growth-promoting effect of the apocarotenoid growth regulator zaxinone in rice

    Get PDF
    Wang et al. report zaxinone as a global regulator of the transcriptome and metabolome, as well as of hormonal and cellular composition of rice roots. This study shows that zaxinone promotes rice growth by enhancing root sugar uptake and metabolism and modulation of cytokinin content, indicating the potential application of this compound in increasing rice performance

    Tyr-Asp inhibition of glyceraldehyde 3-phosphate dehydrogenase affects plant redox metabolism

    Get PDF
    How organisms integrate metabolism with the external environment is a central question in biology. Here, we describe a novel regulatory small molecule, a proteogenic dipeptide Tyr-Asp, which improves plant tolerance to oxidative stress by directly interfering with glucose metabolism. Specifically, Tyr-Asp inhibits the activity of a key glycolytic enzyme, glyceraldehyde 3-phosphate dehydrogenase (GAPC), and redirects glucose toward pentose phosphate pathway (PPP) and NADPH production. In line with the metabolic data, Tyr-Asp supplementation improved the growth performance of both Arabidopsis and tobacco seedlings subjected to oxidative stress conditions. Moreover, inhibition of Arabidopsis phosphoenolpyruvate carboxykinase (PEPCK) activity by a group of branched-chain amino acid-containing dipeptides, but not by Tyr-Asp, points to a multisite regulation of glycolytic/gluconeogenic pathway by dipeptides. In summary, our results open the intriguing possibility that proteogenic dipeptides act as evolutionarily conserved small-molecule regulators at the nexus of stress, protein degradation, and metabolism.Fil: Moreno, Juan C.. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Rojas, Bruno Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Vicente, Rubén. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Gorka, Michal. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Matz, Timon. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Chodasiewicz, Monika. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Peralta?Ariza, Juan S.. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Zhang, Youjun. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Alseekh, Saleh. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Childs, Dorothee. European Molecular Biology Laboratory; AlemaniaFil: Luzarowski, Marcin. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Nikoloski, Zoran. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Zarivach, Raz. Ben Gurion University of the Negev; IsraelFil: Walther, Dirk. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Hartman, Matias Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Figueroa, Carlos Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Iglesias, Alberto Alvaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Fernie, Alisdair R.. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Skirycz, Aleksandra. Max Planck Institute Of Molecular Plant Physiology; Alemani

    Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors

    Get PDF
    Reactive oxygen species (ROS)-dependent signaling pathways from chloroplasts and mitochondria merge at the nuclear protein RADICAL-INDUCED CELL DEATH1 (RCD1). RCD1 interacts in vivo and suppresses the activity of the transcription factors ANAC013 and ANAC017, which mediate a ROS-related retrograde signal originating from mitochondrial complex III. Inactivation of RCD1 leads to increased expression of mitochondrial dysfunction stimulon (MDS) genes regulated by ANAC013 and ANAC017. Accumulating MDS gene products, including alternative oxidases (AOXs), affect redox status of the chloroplasts, leading to changes in chloroplast ROS processing and increased protection of photosynthetic apparatus. ROS alter the abundance, thiol redox state and oligomerization of the RCD1 protein in vivo, providing feedback control on its function. RCD1-dependent regulation is linked to chloroplast signaling by 3'-phosphoadenosine 5'-phosphate (PAP). Thus, RCD1 integrates organellar signaling from chloroplasts and mitochondria to establish transcriptional control over the metabolic processes in both organelles.Peer reviewe

    The INCREASE project: Intelligent Collections of food‐legume genetic resources for European agrofood systems

    Get PDF
    Food legumes are crucial for all agriculture-related societal challenges, including climate change mitigation, agrobiodiversity conservation, sustainable agriculture, food security and human health. The transition to plant-based diets, largely based on food legumes, could present major opportunities for adaptation and mitigation, generating significant co-benefits for human health. The characterization, maintenance and exploitation of food-legume genetic resources, to date largely unexploited, form the core development of both sustainable agriculture and a healthy food system. INCREASE will implement, on chickpea (Cicer arietinum), common bean (Phaseolus vulgaris), lentil (Lens culinaris) and lupin (Lupinus albus and L. mutabilis), a new approach to conserve, manage and characterize genetic resources. Intelligent Collections, consisting of nested core collections composed of single-seed descent-purified accessions (i.e., inbred lines), will be developed, exploiting germplasm available both from genebanks and on-farm and subjected to different levels of genotypic and phenotypic characterization. Phenotyping and gene discovery activities will meet, via a participatory approach, the needs of various actors, including breeders, scientists, farmers and agri-food and non-food industries, exploiting also the power of massive metabolomics and transcriptomics and of artificial intelligence and smart tools. Moreover, INCREASE will test, with a citizen science experiment, an innovative system of conservation and use of genetic resources based on a decentralized approach for data management and dynamic conservation. By promoting the use of food legumes, improving their quality, adaptation and yield and boosting the competitiveness of the agriculture and food sector, the INCREASE strategy will have a major impact on economy and society and represents a case study of integrative and participatory approaches towards conservation and exploitation of crop genetic resources

    Towards the Development, Maintenance and Standardized Phenotypic Characterization of Single-Seed-Descent Genetic Resources for Chickpea

    Get PDF
    Here we present the approach used to develop the INCREASE “Intelligent Chickpea” Collections, from analysis of the information on the life history and population structure of chickpea germplasm, the availability of genomic and genetic resources, the identification of key phenotypic traits and methodologies to characterize chickpea. We present two phenotypic protocols within H2O20 Project INCREASE to characterize, develop, and maintain chickpea single-seed-descent (SSD) line collections. Such protocols and related genetic resource data from the project will be available for the legume community to apply the standardized approaches to develop Chickpea Intelligent Collections further or for multiplication/seed-increase purposes. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC

    Dissecting the interaction of photosynthetic electron transfer with mitochondrial signalling and hypoxic response in the Arabidopsis rcd1 mutant

    Get PDF
    The Arabidopsis mutant rcd1 is tolerant to methyl viologen (MV). MV enhances the Mehler reaction, i.e. electron transfer from Photosystem I (PSI) to O-2, generating reactive oxygen species (ROS) in the chloroplast. To study the MV tolerance of rcd1, we first addressed chloroplast thiol redox enzymes potentially implicated in ROS scavenging. NADPH-thioredoxin oxidoreductase type C (NTRC) was more reduced in rcd1. NTRC contributed to the photosynthetic and metabolic phenotypes of rcd1, but did not determine its MV tolerance. We next tested rcd1 for alterations in the Mehler reaction. In rcd1, but not in the wild type, the PSI-to-MV electron transfer was abolished by hypoxic atmosphere. A characteristic feature of rcd1 is constitutive expression of mitochondrial dysfunction stimulon (MDS) genes that affect mitochondrial respiration. Similarly to rcd1, in other MDS-overexpressing plants hypoxia also inhibited the PSI-to-MV electron transfer. One possible explanation is that the MDS gene products may affect the Mehler reaction by altering the availability of O-2. In green tissues, this putative effect is masked by photosynthetic O-2 evolution. However, O-2 evolution was rapidly suppressed in MV-treated plants. Transcriptomic meta-analysis indicated that MDS gene expression is linked to hypoxic response not only under MV, but also in standard growth conditions.This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'

    Rapid identification of causal mutations in tomato EMS populations via mapping-by-sequencing

    Get PDF
    The tomato is the model species of choice for fleshy fruit development and for the Solanaceae family. Ethyl methanesulfonate (EMS) mutants of tomato have already proven their utility for analysis of gene function in plants, leading to improved breeding stocks and superior tomato varieties. However, until recently, the identification of causal mutations that underlie particular phenotypes has been a very lengthy task that many laboratories could not afford because of spatial and technical limitations. Here, we describe a simple protocol for identifying causal mutations in tomato using a mapping-by-sequencing strategy. Plants displaying phenotypes of interest are first isolated by screening an EMS mutant collection generated in the miniature cultivar Micro-Tom. A recombinant F2 population is then produced by crossing the mutant with a wild-type (WT; non-mutagenized) genotype, and F2 segregants displaying the same phenotype are subsequently pooled. Finally, whole-genome sequencing and analysis of allele distributions in the pools allow for the identification of the causal mutation. The whole process, from the isolation of the tomato mutant to the identification of the causal mutation, takes 6-12 months. This strategy overcomes many previous limitations, is simple to use and can be applied in most laboratories with limited facilities for plant culture and genotyping
    corecore